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IMPACTS OF TWO-AXLE SYSTEM TRAVERSING A BEAM

Research Institute of Transport. Prague. Czechoslovakia

Abstract-The problem of vibrations of simple beam carrying an elastic layer and with irregularities on the
travel surface is studied. The vibrations are forced by impacts of a moving system of four degrees of freedom.
which is an idealization ofa two-axle vehicle moving along a bridge. The mathematical formulation of the problem
is covered by a system of five differential equations with variable coefficients. which is solved numerically using
the computer. The analysis of the effect of some dimensionless parameters gives several important results. e.g.
the greatest dynamic effects due to an isolated unevenness arise at the low movement velocity.
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depth of an unevenness
length of an unevenness
velocity of the movement
axle base parameter (26), d, = DjD
jth natural frequency of the beam (31)
frequency of unsprung mass (33)
frequency of sprung mass (32)
gravitational constant
integration steps
orj= 1,2,3•... ,5

span of the beam
mass of the whole vehicle
unsprung mass of the vehicle
sprung mass of the vehicle
dimensionless generalized time-coordinate of the beam
coordinates of irregularities on travel surface
maximum value of j
time coordinate
approach of two bodies during the impact
deflection of the beam
vertical displacement of mass m,
vertical displacement of sprung mass m3
vertical displacement of sprung mass over the Ith axle
deflection of the beam-center loaded at x = 1/2 by the force PI2, (30)
length coordinate
coordinates of contact points (1)
dimensionless quantity (46)
distance between two points of unevenness or circumference of a wheel
distance of the first unevenness from x = 0
spring constant of the vehicle
viscous damping coefficient of vehicle springs
axle base, distance as in Figs. 1 and 2
bending modulus of the beam
weight total of the beam
polar moment of inertia of sprung mass about centroid 0, see Fig. 1 and 2
spring constant of tires or of springs substituting the roadway under the Ith axle
bending moment of the beam
bending moment at the beam-centre loaded at x = 1/2 by the force P12, see equation (54)
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dimensionless bending moment caused by the load Ri(r) placed in ~" see equation (55)
dimensionless bending moment caused by inertia forces - pv(x, t), see equation (56)
intermediate results printed after each Nth step, they are not printed for N = 0
weight total of vehicle
static unsprung weight of the vehicle
static sprung weight of the vehicle
static sprung weight per ith axle
dimensionless static load, see equation (47)
moving dynamic contact force between ith axle and the beam, see equations (10), (15), (48)
force in spring C i

damping force in spring C i

velocity parameter (19)
sprung frequency parameter (20)
unsprung frequency parameter (21)
Dirac-delta function
function (12)
auxiliary length coordinate
logarithmic damping decrement in the beam and in the spring Ci , respectively
mass parameter (16)
unsprung mass parameter (17)
rotatory parameter (18)
constant mass per unit length of the beam
dimensionless length coordinate (34)
dimensionless coordinate of contact point (44)
dimensionless time coordinate (34)
rotation of the sprung mass
circular damping frequency of the beam

Subscripts

i = 1,2 right or left axle, respectively (unsprung mass)
i = I for i = 2, i = 2 for i = I
o initial
3 sprung mass
b damping

Superscripts

", iv differentiation with respect to x or ~

differentiation with respect to t or r
dimensional form of a quantity

1. INTRODUCTION

THE paper deals with the vibration of a beam subjected to the dynamic action of moving
loads. This classical problem has been solved since the 19th century in connection with
the development of modern transport.

The first authors, R. Willis, G. G. Stokes and H. Zimmermann, see [I], assumed a
single mass moving along a massless simply supported beam. A. N. Krylov and S. P.
Timoshenko, see [I], considered the opposite case, i.e. the movement of a force along a
mass-beam. The general case considering both the mass of the beam and that ofthe moving
load was solved much later by many authors; excellent applications of this theory to the
vibration of railway bridges are due to Inglis [2] and Kolousek [3].

The more complicated problem of a sprung mass traversing a beam has been solved
recently by Hillerborg [4J, Biggs et ai. [5] and Tung et ai. [6]. The author of the present
paper considered in [7] a two-mass system (sprung and unsprung mass) moving along a
beam, the surface of which is covered with an elastic layer of variable stiffness and with
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irregularities on the travel surface. In practice this idealization is convenient for large span
bridges but it is not satisfactory when the span is short. In the latter case the axle base is
comparable with span length of the bridge.

The dynamic response of a beam traversed by two-axle loads has been solved by Wen
[8] whose solution supposes permanent contact between the wheels and the roadway.
However, with regard to the track or wheel irregularities the case of loss of contact can
very easily occur. For that reason the present paper brings the solution of a most general
case when also impacts* between the moving system and the beam may occur. The analysis
is suitable for the dynamic calculation of both highway and railway bridges especially of
short span.

2. THEORETICAL SOLUTION

2.1 Formulation of problem

The mathematical model of the system to be studied is shown schematically in Fig. 1.

I:
0

0, :1°2 '1'

m3 V3(t~ ip(t) f

FIG. I. Model of a beam with an elastic layer and with irregularities; beam subjected to the action of a
moving four-degrees-of-freedom system.

We shall consider a uniform beam of length I, simply supported, damped proportionally
to the velocity of vibrations and described by the Bernoulli~Euler beam-model. The
moving vehicle is considered as a four-degrees of freedom system with two unsprung
masses mj, i = 1, 2, and with a sprung mass m3, which besides the vertical movement is
also capable of rotation. The linear springs possess the constants C j and the viscous
damping coefficients Cbi •

The roadway of railway bridges is idealized by an elastic layer with spring constants
K i under the ith axle, see Fig. 1. The constants K i applicable for the calculation of highway
bridges represent the spring constants of tires, see Fig. 2. Irregularities of the roadway
travel surface r;(xJ which may be different under each axle will be considered. In such a

* The impact is here defined as a collision of two moving solids.



litO

o

FIG. 2. Model of a beam with irregularities loaded by a moving system of four degrees of freedom.

manner various types of irregularities of track or wheels (e.g. flat wheels, an isolated
unevenness of roadway, undulated surface of the roadway etc.) may be considered, see
Fig. 3.

I· "

FIG. 3. Irregularities on the travel surface; (a) effect offlat wheels, (b) isolated unevenness on the roadway
surface, (c) undulated surface of the roadway.

The vehicle is assumed as moving from left to right with constant velocity c, so that
the coordinates of the contact points are

Xl = ct, X 2 = ct-D (I)

where D is the axle base, see Figs. I and 2. The beam is supposed to be at rest when the
vehicle (which can vibrate in this moment) starts to move across it.

Following the assumptions mentioned above the problem may be covered by a system
of five linear differential equations with variable coefficients, which describe the rotation
and vertical movement of the sprung mass, the vertical movements of unsprung masses
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and the bending vibration of the beam, respectively:

2

-IcP(t)+ L (-I)jDi[Zj(t)+Zb;(t)] = 0,
i=1

(2)

2

-m3V3(t)- L [Zj(t)+Zbi(t)] = 0,
i= 1

(3)

i = 1,2, (4), (5)

2

EJviv(x, t) + I1V(X, t) +2WUbV(X, t) = L Bjb(X - Xj)Rj(t).
i= 1

(6)

The following notations were used in equations (2)--(6):

(7)

the deflection of the beam using static deflection by the beam mass /l as datum
vertical displacement of mass mi measured from the position when the springs K i are undeformed
vertical displacement of sprung mass m3 measured from the position before entering the beam
(springs C j are deformed by sprung mass so that P3 = Lf~ I CiV3jO, see equation (7))

q;(t) clockwise rotation of sprung mass measured from the horizontal direction

V3i(t) = v3(t) - (-I )'Diq;(t); i = 1,2

v(x, t)
v,(t)
V3(t)

vertical displacement of the sprung mass over the ith axle,

i = 1,2 (8)

force in spring C"

i = 1,2 (9)

damping force in spring C"

R~t) = Kjui(t) ~ 0; i = 1,2 (10)

moving dynamic contact force between the ith axle and the beam where

u,(t) = Vi(t)-EiV(X" t)-r,(x,); i = 1,2

the approach of the ith unsprung mass and the beam,

- {lfOrO~x,~I, i=I,2
°i = 0 for x,-< 0;-::, > I.

(5(x) the Dirac-delta function

(11 )

(12)

The other notations and symbols are explained in the section Notation in alphabetical
order.

The boundary conditions of the beam are

v(O, t) = 0,

and the initial conditions:

v(l, t) = 0, v"(O, t) = 0, v"(l, t) = 0 (13)

v(X,O) = 0,

Vj(O) = ViO,

V3(0) = V30,

c,o(O) = c,oo,

V(X,O) = 0,

Vj(O) = VjO, i = 1,2

V3(0) = V30'

<,0(0) = <,00'

(14)

The contact force between the two bodies is generally

Ri(t) = kzut(t) (IS)



1112

following the Hertz's contact law, the constant kz see [9J, where the approach of two bodies
ui(t) is given by the equation (11). In practical cases it may be sufficient to linearize the
relation (15) by the equation (10), see [10]. The equation (10) is an approximate relation
for the contact of two bodies and it can be interpreted by introducing the linear springs K i ,

see Figs. 1 and 2.
The contact force Ri(t) must be positive or zero. If Ui(t) < 0 then Rlt) = 0 is to be

substituted in equations (4)-(6). At this moment the natural vibration of the beam and of
the. vehicle occurs because both systems lose the contact. In a short time interval, i.e. when
again Ui(t) = 0, i = I, 2, an impact takes place accompanied by Rlt) > O.

2.2 Dimensionless parameters

The problem formulated for calculations using the computer can be described by 30
dimensionless parameters* :

x = P/G, (16)

Xi = PJP; i = 1,2, (17)

;. = I/(mD z), (18)

r:t. = c/(2};1)/), (19)

11i=j~J};1); i = 1,2, (20)

I'i = };/};1); i = 1,2, (21 )

ai = aJvo; i= 1,2, (22)

hi = nJI; i= 1,2, (23)

Ai = AJI; i = 1,2, (24)

Hi = 8JI; i = 1,2, (25)

d = D/I, (26)

d1 = DJfD, (27)

I) = wb/ };1)' (28)

.9 i = Cbi/(2mf3;); i = 1,2. (29)

In equations (16)-(29) denotes:

Vo = PP/(96 EJ) (30)

(31 )j = 1,2,3, ...

--deflection of the beam at x = 1/2 if the static concentrated load P/2 is acting on the
same coordinate, i.e. at x = 1/2,

. /n(EJ)t
j(j) = 2f2 j; ;

* Eight initial conditions (42) except the first two are also numbered among the input parameters for the
computer. In addition, five following auxiliary parameters were used: the number of the case. integration steps
hi and h 2 , the number N and the number s which are explained in the following sections. A sample of a set of
input parameters is given in Table I.
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-natural frequency of the beam,

1113

1(C)t13i = 2n m' ;

-frequency of sprung mass,

/; = ~(Ki)t
2n m

i = 1,2 (32)

(33)

-frequency of unsprung mass.
The lengths lij, bi , Aj, Bi are evident from Fig. 3 and explained in the following section.

The dimensionless forms of these quantities are ai' bi> Ai, Bi, respectively.

2.3 Transformation ofequations into dimensionless fonn

There are introduced dimensionless independent variables

and dependent ones

~ = xli, r = ct/i (34)

v(e, t) = v(x, t)/vo,

V3(t) = V3(t)jVO,

v;{'r:) = v;(t)/vo; i = 1,2,

<p(r) = iii(t)D/vo'
(35)

i = 1,2,

Putting (l6H35), equations (2H6) may be written in this form:

1 2
iP(t) = Aa2 i~l (-1)iddJi[n2Pizi(t)+.9iazi(r)],

1 2

V3(r) = - ( 2 ) .L Pi[n2Pizi(t)+.9 ioczi(r)],
1- L Xi 0(2.=1

i= 1

48 [n4 n2 JVi(r) = n2Xixa2 2Qi+ 48"'PrZi(r)+ 48.9iPiXOCZi(t)- R;{'r:) ;

2

.viV(~, t) +n2a2V(e, r)+ n2.9ocV(e, r) = 48 L BiJ(~ - ~i)R,{r).
i= 1

(36)

(37)

(38), (39)

(40)

The boundary conditions are now

v(O, r) =-0,

v"(O, r) = 0,

and the initial conditions:

v(l, t) = 0,

v"(l, t) = 0
(41)

v(~, 0) = 0, v(~, 0) = 0,

Vi(O) = ViO, 13;(0) = ViO; i = 1,2

V3(0) = V30, 133(0) = 1330 ,

<p(0) = <Po, q;(O) = q;o.

(42)
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FIG. 4. Interval of integration.

The problem is integrated in the interval, see Fig. 4

°~ r ~ 1+d (43)

As follows from equation (1), the coordinates of contact points are

~l = ct/l = r, ~2 = ct/l-D/l = r-d, (44)

so that their interval is, see Fig. 4

°~ ~ 1 = 1+d, - d ~ ~ 2 ~ 1.

In equations (36)-(40) we use now the following notations

(45)

i = 1,2 (46)

-for the dimensionless approach of the masses mi and m3'

Q; = (P; +P3i)/P = X i +dr(l- .f X;);
,; 1

-for the dimensionless static axle load and

i = 1,2 (47)

i = 1,2 (48)

-for the dimensionless dynamic contact force.

Gi and c5(~) are dimensionless forms of the functions 6; and J(x), respectively.
The dimensionless coordinates of unevenness of the travel surface following Fig. 3

are:

1 [2n ]-a· l-cos-(~·-kA.-B.)2 I b
i

I I I'

0, i = 1,2

for{Bi+k Ai ~ ~i ~ Bi+k Ai+bi,

B;+k Ai+bi < ~i < Bi+(k+ l)A;, k = 0,1,2, ...

(49)
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Several types of irregularities may be expressed by equation (49), see Fig. 3:
(a) The effect ofa flat spot on a wheel ofa railway car can be assumed as a change of the

distance between the centroid of the wheel and the beam. According to the measurement
made in [10] the coordinates of this kind of unevenness are equal to equation (49) using
the following dimensionless notations: ai depth; bi length of the flat spot; Ai wheel
circumference; B i distance of the first impact from x = 0, see Fig. 3(a).

(b) An isolated unevenness on the roadway travel surface according to Fig. 3(b) is
expressed by equation (49) with at = a2' b t = b20 Ai> 1+d, B 1 = B2 .

(c) The undulated travel surface according to Fig. 3(c): a1 = a2' b t = b2 , Ai = b
"B 1 = B 2 •

2.4 Rearrangement of equations for numerical solution

The partial differential equation (40) may be solved by the method of finite Fourier
(sinus) integral transformation which is defined by the relations

qulr) = 2 ( v(e, r) sinjn:e de, (50)

CXJ

v(e, r) = L q(j)(r) sinjn:e.
j= 1

(51)

(52)j = 1,2,3, ...

where q(j)(r) is the dimensionless generalized time-coordinate of the beam deflection.
Transforming the equation (40) using (50), then with regard to the boundary conditions
(41) we obtain, after some rearrangements, the set of equations

.. () 96 ~ R ( ) . .;: '4 n
2

() 8. ()q(j) r = 22 L. SI I r smJn:'>i-J 2 qU) r --q(j) r ;
n: a i=1 a a

with the initial conditions:

q(j)(O) = O. (53)

The system (36H39) and (52) of differential equations is now suitable for numerical
solution.

The calculation of beam-stresses is governed by the magnitude of the bending moment

However, the series (51) after its second derivation with respect to e becomes of poor con­
vergence,· so that it is more convenient to calculate the dimensionless bending moment in
the following way (see [8J):

2

M(e, r) = M(x, t)jMo = L MRi(e, r)+M/l(e, r)
1= 1

(54)

where

M o = Plj8

* The series (51) converges approximately as the series L':';.l III while the series for the bending moment
after the second derivation (51) with respect to econverges ~s the series L}"= 1 1//. The procedure described
below and given by equation (54) improves the calculation of bending moment and the convergence of the series
(57) is approximately the same as that one of the series LJ"= 1 Ili3

•
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-is the bending moment at the beam centre loaded in x = 1/2 by the force P12,

for ~i ~ ~,

(55)

for ~i ~ ~

-is the dimensionless bending moment caused by the load RJr) placed in ~i and

(56)

-is the dimensionless bending moment caused by the inertia forces - /lV(x, t).
We substitute the expression (51) into (56) and supposing that the series (51) converges

uniformly in 0 ~ ~ ~ 1 the order of integration and summation can be interchanged, so
that we obtain

(57)

The calculation of the bending moment by equations (54H57) is convenient because
the needed functions Ri(r) and qulr) must be evaluated anyway if we use the chosen
numerical method. The accuracy of calculation is very good, especially at the low move­
ment velocity, i.e. when MJl(~' r) ~ MRR, r). Using this procedure we develop only a
portion of the bending moment caused by the inertia forces in the Fourier series while the
effect of the forces R;('c) is calculated directly.

2.5 Numerical solution

The initial problem given by the system (36H39) and (52) oflinear ordinary differential
equations of second order with variable coefficients and with the initial conditions (42)
and (53) has been solved numerically using the method of Runge-Kutta-Nystrom, see [11].
A satisfactory approximation is obtained by taking into account the finite number 5 of
equations (52) (5 is one of the given input parameters). The approximate solution of v(~, r)
is then

s

V(~, r)::::o L qw(r) sinjn~;
j~ I

j 1,2,3, ... ,5 (58)

The computer Ural 2 was used for numerical calculations and the following data are
printed after each Nth step: r, MO/2, r), v(1/2, r), RI(r) and R2(r). If r = 1+d the following
values are always printed: r[max M(1/2, r)], max M(1/2, r), r[max v(1/2, r)], max v(1/2, r),
r[max Ri(r)], max R;(r), since the positive maxima of data mentioned above are picked out
in the course of the calculations.

When hi and h2 are input parameters estimated as in [11] and [7] the integration step
is given as follows:

elsewhere; i = 1,2, k = 0,1,2, ...
(59)
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2 T

h2 holds true in the vicinity of the impact (h 2 < hi) as we are expecting a great change of
dynamic forces here.

The accuracy of calculation using several step length hi' h2 and s was verified in the
case No. 30 (see Table 1) and the results are given in Table 2. The convergence of the
series was very good in this example while in some other cases it was a little poorer.

3. EFFECf OF SOME DIMENSIONLESS PARAMETERS

The effect of some dimensionless parameters was studied using a set of input parameters
(case No. 30, Table 1) and changing only one of them in tum keeping the others constant.
This case represents the dynamic effect ofa two-axle car with a flat spot on the second wheel
moving across a short span bridge. A sample of calculations is shown in Fig. 5, and the same
case but without any unevenness is represented by Fig. 6.

a=O'02

Ob!o"C:-------------::::oJ-t{HHHl----T'H~I_---~

I

-;:: 2

~ 3,.
4

~ I
:_ ~~-~....- ........------- ---__2.T

}~~--F--
FIG. 5. Time variation of dimensionless bending moment M(lf2, r) and deflection v(lf2, r) at the beam-

centre and of the forces RI(r) and R2(r). Case No. 30,01 0,°2 = 20, (l = 0'02.

In the following figures only the maxima offunctions MO/2, r), v(1/2, r), R1(r) and R2(r)
are plotted.

3.1 Effect ofvelocity parameter Ci. (9)

This is shown in Fig. 7. It is evident that the dynamic effects of impacts of an isolated
unevenness (flat spot on a wheel) attain their maximum with low moving velocity. The
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2 r

~~~__~f--=::::::::::: ~~ r

~o~
0::- 1r........--------------------------
~.*_= .......~ ~ r

FIG, 6, Time variation of dimensionless bending moment MO/2, r) and deflection v( 1/2, r) at the beam-
centre and of the forces R,(r) and R2(r), Case No, 30, (I, = 0, (12 = 0, IX = 0,02,

axle load max RtCr) of a wheel without any unevenness is almost constant for various rt..

For comparison Fig. 8 shows the same case but without any unevenness. In this case when
no impacts occur the maxima values are much smaller than the maxima in the Fig. 7.

a
FIG. 7. Effect of the velocity parameter IX. Case No. 30, a, = 0, a2 = 20.

Figure 9 represents the behaviour of impact forces for various ex using an enlarged time
scale. For the low moving velocity (ex < 0'0075) the contact force keeps positive (R2(r) > 0)
and no impact occurs. The maximum dynamic effects arise when the contact force decreases
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13

12

II

10!------,

FIG. 8. Effect of the velocity parameter Ct. Case No. 30, at = 0, a2 = O.

a'O'O 1'6 T

,,~\ a -0·0125 16 T

0k-:-=-----f:-,r-r-----,~------..J
·45 a-0'02 16 T

BII-------~
'"a:

2

= 0,

a-0'12

~'a=0'04 T~
I

"I: 0 -45 15j
;'" 1 ---- ~

2

_ O~-:-::--45---f-:-r-11y""'-~-----'-I~
l::N I ~. ~ T
a: ~_ IIa' 0·06

2

~
I

B ~ _.45_-.;.........lj
a:'"

2 ~

FIG. 9. Time variation of dimensionless force R 2(r) near the impact for various Ct. Case No. 30, at
a2 = 20.
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to zero at first and then rises (a ~ 0,0125). The secondary impact occurs after the second
unloading. Increasing the velocity (a ~ 0,02) the wheel loses its contact with the beam just
after running on to a flat spot and then one or more impacts occur, see Fig. 9. However, the
bending moment and deflection maxima begin decreasing in this case. For iY. > 0'05, the
unloading and the primary impact always occurs. However, there is no peak characteristic
for impact phenomena in this case. The force Rz(,r) has a similar variation before and after
the impact while the bending moment and the deflection of the beam are almost unin­
fluenced.

3.2 Effect ofparameters x (16), Pi (20), Yi (21) and az (22)

These are investigated on Figs. 10--13, respectively, using the set of input parameters
No. 30 in Table 1 and keeping other parameters constant.

5

moxv(1/2,T)

FIG. 10. Effect of mass parameter x. Case No. 30, at = 0, a2 = 20, ex = 0·02.

5

mOK v(1/2,T)

4
mOK M(l/2;n

moK Rz!T)

3

2

It:=:::t==±:==±===±==::::l==:::lmOKRI(T)
o 001 002 003 004 0·05 006

13
FIG. II. Effect of sprung frequency parameters Pi' Case No. 30, at = 0, a2 = 20, ex = 0·02.

If the parameter Xi (17) (in the range 0'025 S Xi S 0,1) is increasing the dynamic
stresses of the beam are slightly rising up to Xi ~ 0·05. Then they are kept constant ap­
proximately. The effect of the parameter b2 (23) is similar to that one as shown in the Fig. 13
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max R, (T)

maxM(JI2,T)

max V (J/2,T)

max R2(T)

3

7

4

6

2

5

10 0-2

Yi

FIG. 12. Effect of unsprung frequency parameters )'i' Case No. 30, a l = 0, a2 = 20, :x = 0·02.

6

maxv(l/2,T)

max M(l/2,T)

10

FIG. 13. Effect of depth parameter a2 • Case No. 30, a, = 0, b2 = 0'02, :x = 0·02.

TABLE 1. A SET OF INPUT PARAMETERS

No. of
I case 30

13 I. 0·2 25 B, 0
2 V IO 10 14 :x 0·02 26 B2 -I
3 v20 10 IS {31 0·04 27 d I
4 v30 10 16 {32 0·04 28 d, 0·5
5 CPo 0 17 )'1 0·2 29 .9 0·5
6 1\0 0 18 )'2 0·2 30 9 1 0·5
7 1;20 0 19 al 0 31 8 2 0·5
8 i'30 0 20 a2 20 32 h, 0·001
9 <Po 0 21 h, 0·02 33 h2 0·0001

10 x I 22 b2 0·02 34 N 10
11 XI 0·05 23 A, 0·5 35 s 3
12 x 2 0·05 24 A 2 0·5
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TABLE 2. EFFECT OF INTEGRATION STEP LENGTH AND OF NUMBER ,\' or- EQlIATIONS (case No. 30)

_."~-

hI 0·001 0·0005

h2 0·0001 0·0001

s 1 3 1 3

T[max M(1, T)] 1·5710999 1·5710999 1·5710999 1·5715999
max M(1, T) 3·5583133 3·5504918 3·5583731 3·5603028

T[max 1'(1, T)] 1·5720999 ',5720999 ',5725999 1·5725999
max 1'(1. Tj 4·1934544 4·2011628 4·1948825 4·2038006

T[max RI(T)] 0·0220000 0·0220000 0·0220000 0·0220000
max RI(T) 1·1385666 l-l384909 1·1385666 1-1384909

T[max R,(T)] 0·0209000 0·0209000 0·0209000 0·0209000
max R,(T) 2·7198116 2·7198118 2'7198118 2·7198118

(for 0 ~ b2 ~ 0'04, case No. 30). The parameter A(18) expressing the rotatory characteris­
tics of the sprung mass has in the range 0·1 ~ A ~ 0·3 no effect on the maxima of functions
M(1/2, r) and v(1/2, r). The effect of the initial conditions (42) was also studied. In com­
parison with the case when impact occurs the dynamic effect of the initial conditions just
mentioned is small for the case of no unevenness (ai = 0).

4. CONCLUSIONS

The paper presents a discussion concerning the vibrations of a simple beam carrying
an elastic layer forced by a moving system of four degrees of freedom. There are supposed
irregularities on the travel surface, so that impacts between the moving system and the
beam may occur. The linearized Hertz's contact law is supposed to hold true and also the
loss ofcontact between the two solids can take place. The mathematical formulation results
in a system of five differential equations with variable coefficients that is solved numerically
by the method of Runge-Kutta-Nystrom using the computer Ural 2.

In technical practice the described system is an idealization of the dynamic effects
of a moving vehicle crossing a bridge. The theory was verified by field tests carried out on
four railway bridges under the action of moving car with flat wheels. The experimental
results and the comparison between the theoretical and experimental deflections and bend­
ing moments of the four bridges mentioned are described in detail in [12l

The most important results of present investigations concerning the effect of an isolated
unevenness (flat wheel of a car) are as follows:

1. The dynamic effects have their maximum at the low velocity (in practice around
25-50 km/hr).

2. The dynamic effects are rising with increasing vehicle mass but unsprung masses
have only a smaller effect.

3. If the stiffness of the roadway is increasing the beam stresses attain higher values
as well.

4. The dynamic stresses of the beam increase almost in direct proportion to the depth
of an unevenness.

5. The effect of track or wheel irregularities is much greater than the effect of initial
conditions of the vehicle.
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A6cTpaKT-B pa60Te pewaeTClI K0J1e6aHHe wapHHpHO orrepToH 6aJ1KH C ynpyrHM CJ10CM H C Hepo­
BHOCTlIMl-l pa60'feH rrOBepXHOCTl-l MOCTOBOil:. K0J1e6aHl-l1l BhIHY)I(AeHHhl YAapaMR ABR)I(yw.eil:clI CRCTeMhl
C 'feThlpMlI CTeneHlIMH CBo6oAhl, 'ITO B TeXHH'IecKOil: npaKTl-lKe npe,ll;CTaBJ1l1eT ,!J,BH)I(eHHe AByxocoBorO
COCTaBa no MOCTe. MaTeMaTH'feCKall cPOPMYJ1HpOBKa npHBOAHT K CHCTeMe nllTH ,!J,HcPcPepeHl.{HaJ1hHhlX
ypaBHeHHH C nepeMeHHhlMH K03cPcPHl.{HeHTaMH, peweHHe KOTOPOil: BhIllOJ1HeHO Ha Bhl'fHCJ1l-lTeJ1hHOil:
MawHHe. AHaJIH3 BJIHlIHHlI HeKOTophiX 6e3pa3MepHhIX napaMeTpOB npHBOAHT KHeCKOJ1hKHM Ba)lCHeil:Wl-lM
pe3yJ1hTaTaM, Hanp. Hail:6oJ1hWHe ,Il;HHaMH'IeCKHe Hanpll)l(eHHlI 6aJ1KH Bhl3BaHHhle H30J1HpOBaHHOH
HepOBHocTeil: B03HHKaIOT npH HH3KHX CKOrOCTlIX ABH)I(eHHlI.


